
4
BUILDING YOUR TEST PLATFORM

In this chapter, I’ll outline the tools you need to
review your code and test your iOS applications, and
I’ll show you how to build a robust and useful test plat-
form. That test platform will include a properly set up
Xcode instance, an interactive network proxy, reverse
engineering tools, and tools to bypass iOS platform
security checks.

I’ll also cover the settings you need to change in Xcode projects to
make bugs easier to identify and fix. You’ll then learn to leverage Xcode’s
static analyzer and compiler options to produce well-protected binaries and
perform more in-depth bug detection.

Taking Off the Training Wheels
A number of behaviors in a default OS X install prevent you from really
digging in to the system internals. To get your OS to stop hiding the things
you need, enter the following commands at a Terminal prompt:

$ defaults write com.apple.Finder AppleShowAllFiles TRUE

$ defaults write com.apple.Finder ShowPathbar -bool true

$ defaults write com.apple.Finder _FXShowPosixPathInTitle -bool true

iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

$ defaults write NSGlobalDomain AppleShowAllExtensions -bool true

$ chflags nohidden ~/Library/

These settings let you see all the files in the Finder, even ones that are
hidden from view because they have a dot in front of their name. In addi-
tion, these changes will display more path information and file extensions,
and most importantly, they allow you to see your user-specific Library, which
is where the iOS Simulator will store all of its data.

The chflags command removes a level of obfuscation that Apple has
put on directories that it considers too complicated for you, such as /tmp or
/usr. I’m using the command here to show the contents of the iOS Simulator
directories without having to use the command line every time.

One other thing: consider adding $SIMPATH to the Finder’s sidebar
for easy access. It’s convenient to use $SIMPATH to examine the iOS Simula-
tor’s filesystem, but you can’t get to it in the Finder by default. To make this
change, browse to the following directory in the Terminal:

$ cd ~/Library/Application\ Support

$ open .

Then, in the Finder window that opens, drag the iPhone Simulator
directory to the sidebar. Once you’re riding without training wheels, it’s
time to choose your testing device.

Suggested Testing Devices
My favorite test device is the Wi-Fi only iPad because it’s inexpensive and
easy to jailbreak, which allows for testing iPad, iPhone, and iPod Touch
applications. Its lack of cellular-based networking isn’t much of a hindrance,
given that you’ll want to intercept network traffic most of the time anyway.

But this configuration does have some minor limitations. Most signif-
icantly, the iPad doesn’t have GPS or SMS, and it obviously doesn’t make
phone calls. So it’s not a bad idea to have an actual iPhone of some kind
available.

I prefer to have at least two iPads handy for iOS testing: one jailbro-
ken and one stock. The stock device allows for testing in a legitimate, real-
istic end-user environment, and it has all platform security mechanisms
still intact. It can also register properly for push notifications, which has
proven problematic for jailbroken devices in the past. The jailbroken device
allows you to more closely inspect the filesystem layout and more detailed
workings of iOS; it also facilitates black-box testing that wouldn’t be feasible
using a stock device alone.

42 Chapter 4 iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

Testing with a Device vs. Using a Simulator
Unlike some other mobile operating systems, iOS development uses a simula-
tor rather than an emulator. This means there’s no full emulation of the iOS
device because that would require a virtualized ARM environment. Instead,
the simulators that Apple distributes with Xcode are compiled for the x64
architecture, and they run natively on your development machine, which
makes the process significantly faster and easier. (Try to boot the Android
emulator inside a virtual machine, and you’ll appreciate this feature.)

On the flip side, some things simply don’t work the same way in the iOS
Simulator as they do on the device. The differences are as follows:

Case-sensitivity Unless you’ve intentionally changed this behavior,
OS X systems operate with case-insensitive HFS+ filesystems, while iOS
uses the case-sensitive variant. This should rarely be relevant to security
but can cause interoperability issues when modifying programs.

Libraries In some cases, iOS Simulator binaries link to OS X frame-
works that may behave differently than those on iOS. This can result in
slightly different behavior.

Memory and performance Since applications run natively in the
iOS Simulator, they’ll be taking full advantage of your development
machine’s resources. When gauging the impact of things such as
PBKDF2 rounds (see Chapter 13), you’ll want to compensate for this
or test on a real device.

Camera As of now, the iOS Simulator does not use your development
machine’s camera. This is rarely a huge issue, but some applications
do contain functionality such as “Take a picture of my check stub or
receipt,” where the handling of this photo data can be crucial.

SMS and cellular You can’t test interaction with phone calls or SMS
integration with the iOS Simulator, though you can technically simulate
some aspects, such as toggling the “in-call” status bar.

Unlike in older versions of iOS, modern versions of the iOS Simulator
do in fact simulate the Keychain API, meaning you can manage your own
certificate and store and manipulate credentials. You can find the files
behind this functionality in $SIMPATH/Library/Keychains.

Network and Proxy Setup
Most of the time, the first step in testing any iOS application is to run it
through a proxy so you can examine and potentially modify traffic going
from the device to its remote endpoint. Most iOS security testers I know use
BurpSuite1 for this purpose.

1. http://www.portswigger.net

Building Your Test Platform 43iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

http://www.portswigger.net

Bypassing TLS Validation
There’s one major catch to running an app under test through a proxy:
iOS resolutely refuses to continue TLS/SSL connections when it cannot
authenticate the server’s certificate, as well it should. This is, of course, the
correct behavior, but your proxy-based testing will screech to a halt rather
quickly if iOS can’t authenticate your proxy’s certificate.

For BurpSuite specifically, you can obtain a CA certificate simply by
configuring your device or iOS Simulator to use Burp as a proxy and then
browsing to http://burp/cert/ in Mobile Safari. This should work either on a
real device or in the iOS Simulator. You can also install CA certificates onto
a physical device by either emailing them to yourself or navigating to them
on a web server.

For the iOS Simulator, a more general approach that works with almost
any web proxy is to add the fingerprint of your proxy software’s CA certifi-
cate directly into the iOS Simulator trust store. The trust store is a SQLite
database, making it slightly more cumbersome to edit than typical certifi-
cate bundles. I recommend writing a script to automate this task. If you
want to see an example to get you started, Gotham Digital Science has
already created a Python script that does the job. You’ll find the script
here: https://github.com/GDSSecurity/Add-Trusted-Certificate-to-iOS-Simulator/ .

To use this script, you need to obtain the CA certificate you want to
install into the trust store. First configure Firefox2 to use your local proxy
(127.0.0.1, port 8080 for Burp). Then attempt to visit any SSL site; you
should get a familiar certificate warning. Navigate to Add Exception →
View → Details and click the PortSwigger CA entry, as shown in Figure 4-1.

Click Export and follow the prompts. Once you’ve saved the CA certifi-
cate, open Terminal.app and run the Python script to add the certificate to
the store as follows:

$ python ./add_ca_to_iossim.py ~/Downloads/PortSwiggerCA.pem

Unfortunately, at the time of writing, there isn’t a native way to config-
ure the iOS Simulator to go through an HTTP proxy without also routing
the rest of your system through the proxy. Therefore, you’ll need to config-
ure the proxy in your host system’s Preferences, as shown in Figure 4-2.

If you’re using the machine for both testing and other work activities,
you might consider specifically configuring other applications to go through
a separate proxy, using something like FoxyProxy3 for your browser.

2. I generally consider Chrome a more secure daily browser, but the self-contained nature of
Firefox does let you tweak proxy settings more conveniently.

3. http://getfoxyproxy.org

44 Chapter 4 iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

http://burp/cert/
https://github.com/GDSSecurity/Add-Trusted-Certificate-to-iOS-Simulator/
http://getfoxyproxy.org

Figure 4-1: Selecting the PortSwigger CA for export

Figure 4-2: Configuring the host system to connect via Burp
Building Your Test Platform 45iOS Application Security: The Definitive Guide for Hackers and Developers

© 2016 David Thiel

Bypassing SSL with stunnel
One method of bypassing SSL endpoint verification is to set up a termina-
tion point locally and then direct your application to use that instead. You
can often accomplish this without recompiling the application, simply by
modifying a plist file containing the endpoint URL.

This setup is particularly useful if you want to observe traffic easily
in plaintext (for example, with Wireshark), but the Internet-accessible
endpoint is available only over HTTPS. First, download and install stun-
nel,4 which will act as a broker between the HTTPS endpoint and your
local machine. If installed via Homebrew, stunnel’s configuration file will
be in /usr/local/etc/stunnel/stunnel.conf-sample. Move or copy this file to
/usr/local/etc/stunnel/stunnel.conf and edit it to reflect the following:

; SSL client mode

client = yes

; service-level configuration

[https]

accept = 127.0.0.1:80

connect = 10.10.1.50:443

TIMEOUTclose = 0

This simply sets up stunnel in client mode, instructing it to accept con-
nections on your loopback interface on port 80, while forwarding them to
the remote endpoint over SSL. After editing this file, set up Burp so that it
uses your loopback listener as a proxy, making sure to select the Support
invisible proxying option, as shown in Figure 4-3. Figure 4-4 shows the result-
ing setup.

Figure 4-3: Setting up invisible proxying through the local stunnel endpoint

4. http://www.stunnel.org/

46 Chapter 4 iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

http://www.stunnel.org/

Figure 4-4: Final Burp/stunnel setup

Certificate Management on a Device
To install a certificate on a physical iOS device, simply email the certificate
to an account associated with the device or put it on a public web server and
navigate to it using Mobile Safari. You can then import it into the device’s
trust store, as shown in Figure 4-5. You can also configure your device to go
through a network proxy (that is, Burp) hosted on another machine. Simply
install the CA certificate (as described earlier) of the proxy onto the device
and configure your proxy to listen on a network-accessible IP address, as in
Figure 4-6.

Figure 4-5: The certificate import prompt

Figure 4-6: Configuring Burp to use a nonlocalhost IP address

Building Your Test Platform 47iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

Proxy Setup on a Device
Once you’ve configured your certificate authorities and set up the proxy,
go to Settings → Network → Wi-Fi and click the arrow to the right of your
currently selected wireless network. You can enter the proxy address and
port from this screen (see Figure 4-7).

Figure 4-7: Configuring the device to use a
test proxy on an internal network

Note that when configuring a device to use a proxy, only connections
initiated by NSURLConnection or NSURLSession will obey the proxy settings; other
connections such as NSStream and CFStream (which I’ll discuss further in Chap-
ter 7) will not. And of course, since this is an HTTP proxy, it works only for
HTTP traffic. If you have an application using CFStream, you can edit the
codebase with the following code snippet to route stream traffic through the
same proxy as the host OS:

CFDictionaryRef systemProxySettings = CFNetworkCopySystemProxySettings();

CFReadStreamSetProperty(readStream, kCFStreamPropertyHTTPProxy, systemProxySettings

);

CFWriteStreamSetProperty(writeStream, kCFStreamPropertyHTTPProxy,

systemProxySettings);

48 Chapter 4 iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

If you’re using NSStream, you can accomplish the same by casting the
NSInputStream and NSOutputStream to their Core Foundation counterparts,
like so:

CFDictionaryRef systemProxySettings = CFNetworkCopySystemProxySettings();

CFReadStreamSetProperty((CFReadStreamRef)readStream, kCFStreamPropertyHTTPProxy, (

CFTypeRef)systemProxySettings);

CFWriteStreamSetProperty((CFWriteStreamRef)writeStream, kCFStreamPropertyHTTPProxy,

(CFTypeRef)systemProxySettings);

If you’re doing black-box testing and have an app that refuses to honor
system proxy settings for HTTP requests, you can attempt to direct traffic
through a proxy by adding a line to /etc/hosts on the device to point name
lookups to your proxy address, as shown in Listing 4-1.

10.50.22.11 myproxy api.testtarget.com

Listing 4-1: Adding a hosts file entry

You can also configure the device to use a DNS server controlled by you,
which doesn’t require jailbreaking your test device. One way to do this is to
use Tim Newsham’s dnsRedir,5 a Python script that will provide a spoofed
answer for DNS queries of a particular domain, while passing on queries for
all other domains to another DNS server (by default, 8.8.8.8, but you can
change this with the -d flag). The script can be used as follows:

$ dnsRedir.py 'A:www.evil.com.=1.2.3.4'

This should answer queries for www.evil.com with the IP address 1.2.3.4,
where that IP address should usually be the IP address of the test machine
you’re proxying data through.

For non-HTTP traffic, things are a little more involved. You’ll need to
use a TCP proxy to intercept traffic. The aforementioned Tim Newsham has
written a program that can make this simpler—the aptly named tcpprox.6 If
you use the hosts file method in Listing 4-1 to point the device to your proxy
machine, you can then have tcpprox dynamically create SSL certificates and
proxy the connection to the remote endpoint. To do this, you’ll need to
create a certificate authority certificate and install it on the device, as shown
in Listing 4-2.

5. https://github.com/iSECPartners/dnsRedir/

6. https://github.com/iSECPartners/tcpprox/

Building Your Test Platform 49iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

https://github.com/iSECPartners/dnsRedir/
https://github.com/iSECPartners/tcpprox/

$./prox.py -h

Usage: prox.py [opts] addr port

Options:

-h, --help show this help message and exit

-6 Use IPv6

-b BINDADDR Address to bind to

-L LOCPORT Local port to listen on

-s Use SSL for incoming and outgoing connections

--ssl-in Use SSL for incoming connections

--ssl-out Use SSL for outgoing connections

-3 Use SSLv3 protocol

-T Use TLSv1 protocol

-C CERT Cert for SSL

-A AUTOCNAME CName for Auto-generated SSL cert

-1 Handle a single connection

-l LOGFILE Filename to log to

$./ca.py -c

$./pkcs12.sh ca

(install CA cert on the device)

$./prox.py -s -L 8888 -A ssl.testtarget.com ssl.testtarget.com 8888

Listing 4-2: Creating a certificate and using tcpprox to intercept traffic

The ca.py script creates the signed certificate, and the pkcs12.sh script
produces the certificate to install on the device, the same as shown in Fig-
ure 4-5. After running these and installing the certificate, your application
should connect to the remote endpoint using the proxy, even for SSL con-
nections. Once you’ve performed some testing, you can read the results with
the proxcat.py script included with tcpprox, as follows:

$./proxcat.py -x log.txt

Once your application is connected through a proxy, you can start
setting up your Xcode environment.

Xcode and Build Setup
Xcode contains a twisty maze of project configuration options—hardly
anyone understands what each one does. This section takes a closer look
at these options, discusses why you would or wouldn’t want them, and
shows you how to get Xcode to help you find bugs before they become real
problems.

50 Chapter 4 iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

Make Life Difficult
First things first: treat warnings as errors. Most of the warnings generated by
clang, Xcode’s compiler frontend, are worth paying attention to. Not only
do they often help reduce code complexity and ensure correct syntax, they
also catch a number of errors that might be hard to spot, such as signedness
issues or format string flaws. For example, consider the following:

- (void) validate:(NSArray*) someTribbles withValue:(NSInteger) desired {

if (desired > [someTribbles count]) {

[self allocateTribblesWithNumberOfTribbles:desired];

}

}

The count method of NSArray returns an unsigned integer, (NSUInteger).
If you were expecting the number of desired tribbles from user input, a
submitted value might be –1, presumably indicating that the user would
prefer to have an anti-tribble. Because desired is an integer being compared
to an unsigned integer, the compiler will treat both as unsigned integers.
Therefore, this method would unexpectedly allocate an absurd number
of tribbles because –1 is an extremely large number when converted to an
unsigned integer. I’ll discuss this type of integer overflow issue further in
Chapter 11.

You can have clang flag this type of of bug by enabling most warn-
ings and treating them as errors, in which case your build would fail with
a message indicating "Comparison of integers of different signs: 'int'

and 'NSUInteger' (aka 'unsigned int')".

NOTE In general, you should enable all warnings in your project build configuration and
promote warnings to errors so that you are forced to deal with bugs as early as possible
in the development cycle.

You can enable these options in your project and target build settings.
To do so, first, under Warning Policies, set Treat Warnings as Errors to Yes
(Figure 4-8). Then, under the Warnings sections, turn on all the desired
options.

Note that not every build warning that clang supports has an exposed
toggle in the Xcode UI. To develop in “hard mode,” you can add the -Wextra

or -Weverything flag, as in Figure 4-9. Not all warnings will be useful, but it’s
best to try to understand exactly what an option intends to highlight before
disabling it.

-Weverything, used in Figure 4-9, is probably overkill unless you’re curious
about clang internals; -Wextra is normally sufficient. To save you a bit of time,
Table 4-1 discusses two warnings that are almost sure to get in your way (or
that are just plain bizarre).

Building Your Test Platform 51iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

Figure 4-8: Treating all warnings as errors

Figure 4-9: This setting enables all warnings, including options for which there is no
exposed UI.

52 Chapter 4 iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

Table 4-1: Obnoxious Warnings to Disable in Xcode

Compiler warning Justification for disabling

Implicit synthesized properties Since property synthesis is now auto-
matic, this isn’t really an error unless
your development guidelines require
explicit synthesis.

Unused parameters/functions/variables etc. These can be supremely irritating
when writing code, since your code is
obviously not completely implemented
yet. Consider enabling these only for
nondebug builds.

Enabling Full ASLR
In iOS 4.3, Apple introduced address space layout randomization (ASLR). ASLR
ensures that the in-memory structure of the program and its data (libraries,
the main executable, stack and heap, and memory-mapped files) are loaded
into less predictable locations in the virtual address space. This makes code
execution exploits more difficult because many rely on referencing the
virtual addresses of specific library calls, as well as referencing data on the
stack or heap.

For this to be fully effective, however, the application must be built as
a position-independent executable (PIE), which instructs the compiler to build
machine code that can function regardless of its location in memory. With-
out this option, the location of the base executable and the stack will remain
the same, even across reboots,7 making an attacker’s job much easier.

To ensure that full ASLR with PIE is enabled, check that Deployment
Target in your Target’s settings is set to at least iOS version 4.3. In your
project’s Build Settings, ensure that Generate Position-Dependent Code
is set to No and that the bizarrely named Don’t Create Position Independent
Executable is also set to No. So don’t create position-independent executa-
bles. Got it?

For black-box testing or to ensure that your app is built with ASLR cor-
rectly, you can use otool on the binary, as follows:

$ unzip MyApp.ipa

$ cd Payload/MyApp.app

$ otool -vh MyApp

MyApp (architecture armv7):

Mach header

magic cputype cpusubtype caps filetype ncmds sizeofcmds flags

MH_MAGIC ARM V7 0x00 EXECUTE 21 2672 NOUNDEFS DYLDLINK

TWOLEVEL PIE

7. http://www.trailofbits.com/resources/ios4_security_evaluation_paper.pdf

Building Your Test Platform 53iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

http://www.trailofbits.com/resources/ios4_security_evaluation_paper.pdf

MyApp (architecture armv7s):

Mach header

magic cputype cpusubtype caps filetype ncmds sizeofcmds flags

MH_MAGIC ARM V7S 0x00 EXECUTE 21 2672 NOUNDEFS DYLDLINK

TWOLEVEL PIE

At the end of each MH_MAGIC line, if you have your settings correct, you
should see the PIE flag, highlighted in bold. (Note that this must be done
on a binary compiled for an iOS device and will not work when used on iOS
Simulator binaries.)

Clang and Static Analysis
In computer security, static analysis generally refers to using tools to analyze
a codebase and identify security flaws. This could involve identifying dan-
gerous APIs, or it might include analyzing data flow through the program
to identify the potentially unsafe handling of program inputs. As part of the
build tool chain, clang is a good spot to embed static analysis language.

Beginning with Xcode 3.2, clang’s static analyzer8 has been integrated
with Xcode, providing users with a UI to trace logic, coding flaws, and
general API misuse. While clang’s static analyzer is handy, several of its
important features are disabled by default in Xcode. Notably, the checks
for classic dangerous C library functions, such as strcpy and strcat, are oddly
absent. Enable these in your Project or Target settings, as in Figure 4-10.

Figure 4-10: Enabling all clang static analysis checks in Xcode

8. http://clang-analyzer.llvm.org/
54 Chapter 4 iOS Application Security: The Definitive Guide for Hackers and Developers

© 2016 David Thiel

http://clang-analyzer.llvm.org/

Address Sanitizer and Dynamic Analysis
Recent versions of Xcode include a version of clang/llvm that features the
Address Sanitizer (ASan). ASan is a dynamic analysis tool similar to Valgrind,
but ASan runs faster and has improved coverage.9 ASan tests for stack and
heap overflows and use-after-free bugs, among other things, to help you
track down crucial security flaws. It does have a performance impact (pro-
gram execution is estimated to be roughly two times slower), so don’t enable
it on your release builds, but it should be perfectly usable during testing,
quality assurance, or fuzzing runs.

To enable ASan, add -fsanitize=address to your compiler flags for debug
builds (see Figure 4-11). On any unsafe crashes, ASan should write extra
debug information to the console to help you determine the nature and
severity of the issues. In conjunction with fuzzing,10 ASan can be a great help
in pinning down serious issues that may be security-sensitive and in giving an
idea of their exploitability.

Figure 4-11: Setting the ASan compiler flags

Monitoring Programs with Instruments
Regardless of whether you’re analyzing someone else’s application or trying
to improve your own, the DTrace-powered Instruments tool is extremely
helpful for observing an app’s activity on a fine-grained level. This tool is
useful for monitoring network socket usage, finding memory allocation
issues, and watching filesystem interactions. Instruments can be an excellent
tool for discovering what objects an application stores on local storage in
order to find places where sensitive information might leak; I use it in that
way frequently.

Activating Instruments
To use Instruments on an application from within Xcode, hold down the
Run button and select the Build for Profiling option (see Figure 4-12).
After building, you will be presented with a list of preconfigured templates
tailored for monitoring certain resources, such as disk reads and writes,
memory allocations, CPU usage, and so on.

9. http://clang.llvm.org/docs/AddressSanitizer.html

10. http://blog.chromium.org/2012/04/fuzzing-for-security.html
Building Your Test Platform 55iOS Application Security: The Definitive Guide for Hackers and Developers

© 2016 David Thiel

http://clang.llvm.org/docs/AddressSanitizer.html
http://blog.chromium.org/2012/04/fuzzing-for-security.html

Figure 4-12: Selecting the Build for Profiling option

The File Activity template (shown in Figure 4-13) will help you monitor
your application’s disk I/O operations. After selecting the template, the iOS
Simulator should automatically launch your application and begin recording
its activity.

Figure 4-13: Selecting the File Activity profiling template

There are a few preset views in Instruments for monitoring file activity.
A good place to start is Directory I/O, which will capture all file creation
or deletion events. Test your application the way you normally would and
watch the output here. Each event is listed with its Objective-C caller, the C
function call underlying it, the file’s full path, and its new path if the event is
a rename operation.

You’ll likely notice several types of cache files being written here (see
Figure 4-14), as well as cookies or documents your application has been
asked to open. If you suspend your application, you should see the applica-
tion screenshot written to disk, which I’ll discuss in Chapter 10.

For a more detailed view, you can select the Reads/Writes view, as shown
in Figure 4-15. This will show any read or write operations on files or sockets,
along with statistics on the amount of data read or written.

56 Chapter 4 iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

Figure 4-14: Directory I/O view showing files created or deleted

Figure 4-15: Profiling results showing detailed file reads and writes

Building Your Test Platform 57iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

Watching Filesystem Activity with Watchdog
Instruments should catch most iOS Simulator activity, but some file writes
or network calls may actually be performed by other system services, thereby
escaping the tool’s notice. It’s a good idea to manually inspect the iOS Simu-
lator’s directory tree to get a better feel for the structure of iOS and its appli-
cations and to catch application activity that you might otherwise miss.

One easy way to automate this is to use the Python watchdog module.11

Watchdog will use either the kqueue or FSEvents API to monitor directory
trees for file activity and can either log events or take specific actions when
these events occur. To install watchdog, use the following:

$ pip install watchdog

You can write your own scripts to use watchdog’s functionality, but
you’ll find a nice command line tool already included with watchdog called
watchmedo. If you open a Terminal window and navigate to the Simulator
directory, you should be able to use watchmedo to monitor all file changes
under the iOS Simulator’s directory tree, as follows:

$ cd ~/Library/Application\ Support/iPhone\ Simulator/6.1

$ watchmedo log --recursive .

on_modified(self=<watchdog.tricks.LoggerTrick object at 0x103c9b190>, event=<

DirModifiedEvent: src_path=/Users/dthiel/Library/Application Support/iPhone

Simulator/6.1/Library/Preferences>)

on_created(self=<watchdog.tricks.LoggerTrick object at 0x103c9b190>, event=<

FileCreatedEvent: src_path=/Users/dthiel/Library/Application Support/iPhone

Simulator/6.1/Applications/9460475C-B94A-43E8-89C0-285DD036DA7A/Library/Caches

/Snapshots/com.yourcompany.UICatalog/UIApplicationAutomaticSnapshotDefault-

Portrait.png>)

on_modified(self=<watchdog.tricks.LoggerTrick object at 0x103c9b190>, event=<

DirModifiedEvent: src_path=/Users/dthiel/Library/Application Support/iPhone

Simulator/6.1/Applications/9460475C-B94A-43E8-89C0-285DD036DA7A/Library/Caches

/Snapshots>)

on_created(self=<watchdog.tricks.LoggerTrick object at 0x103c9b190>, event=<

DirCreatedEvent: src_path=/Users/dthiel/Library/Application Support/iPhone

Simulator/6.1/Applications/9460475C-B94A-43E8-89C0-285DD036DA7A/Library/Caches

/Snapshots/com.yourcompany.UICatalog>)

on_modified(self=<watchdog.tricks.LoggerTrick object at 0x103c9b190>, event=<

DirModifiedEvent: src_path=/Users/dthiel/Library/Application Support/iPhone

Simulator/6.1/Library/SpringBoard>)

11. https://pypi.python.org/pypi/watchdog/

58 Chapter 4 iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

https://pypi.python.org/pypi/watchdog/

Entries that start with on on_modified indicate a file was changed, and
entries that start with on_created indicate a new file. There are several other
change indicators you might see from watchmedo, and you can read about
them in the Watchdog documentation.

Closing Thoughts
You should now have your build and test environment configured for run-
ning, modifying, and examining iOS apps. In Chapter 5, we’ll take a closer
look at how to debug and inspect applications dynamically, as well as how to
change their behavior at runtime.

Building Your Test Platform 59iOS Application Security: The Definitive Guide for Hackers and Developers
© 2016 David Thiel

